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INTRODUCTION.

§ 1. Integral functions can be defined either by TAYLOR'S series or Weierstrassian products. When the
zeros are simple functions of their order number, the latter method is, as a rule, most simple. When the
zeros, however, are transcendental functions of the order number, those integral functions which so far
have occurred in analysis have been defined by TAYLOR’S series.

[Definitions by definite integrals have usually been reducible to one of the preceding forms.]

Whatever be the manner of its definition, an integral function has a single essential singularity at
infinity, and the behaviour near this singularity serves to classify the function. By studying this
behaviour we may hope to find connecting links between the two modes of definition.

The behaviour at infinity is determined by asymptotic expansions.

The first expansion of a function was derived from STIRLING’S! approximation to #!. This led naturally
to expressions for I' (z) when # is large and real.

1 STIRLING, ¢ Methodus Differentialis,” 1730.
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Such were considered by, among others, CAUCHY,! BINET,2 and RAABE:? Other references to the
history of the subject will be found in the ¢ Encyklopiidie der Mathematischen Wissenschaften.”

But the behaviour of a function defined by a Weierstrassian product, when considered only for real
values of the variable near infinity, affords little knowledge of the essential singularity. STIELTIES® first
proved the asymptotic expansion for I'(z) to be valid for all values of |arg #| <. His result was
subsequently obtained by MELLIN. Immediately afterwards the author,” from an idea suggested by one
of MELLIN’S earlier papers and due originally to RIEMANN,® extended the result to the multiple gamma
functions. Then, simultaneously, MELLIN® and the authorl® discovered the asymptotic expansions for
large classes of integral functions defined by Weierstrassian products. Such investigations have been
developed by the author in a series of papers.!!

It is natural to expect that similar results can be obtained for functions defined by TAYLOR’S series.

An asymptotic expansion for BESSEL's function Jj(x) was first given for real values of # by Poisson.!2
The result was extended to other integral values of =, that is to say, to functions J, (z), where n is an
integer, by JAcOBL!® Then, in a noteworthy paper, HANKEL!* extended the result to general complex
values both of the parameter #» and the variable ; and though his statement of his results merited the
criticism of HURwITZ,' it deserves recognition as a valuable discovery. The question has since been
considered, among others, by WEBER® and NIELSEN'”. Further references will be found in the
¢ Encyklopidie "8 and in NIELSEN’S text book.'” v

In this connection mention may be made of a similar investigation by HoBsoN' in the theory of
LrGENDRE’S functions.

Closely allied to BrssEL’s function are integral functions defined by generalised hypergeometric

1 Caucny, ‘Exercices d’Analyse,” tome 2, p. 386.

2 BINET, ‘Journal de 'Ecole Polytechnique,’ tome 27, p. 220.

3 RAABE, ‘Crelle,” vol. 25, p. 147 ; vol. 28, p. 10.

¢ BRUNEL, loc. cit., vol. 2, A, p. 166.

5 StieLTIES, ‘ Liouville,” sér. 4, vol. 5, p. 425.

6 MELLIN, ¢ Acta Societatis Scientiarum Fennicae,” tome 24, No. 10.

7 BARNES, ‘Phil. Trans. Roy. Soc.,” A, vol. 196, p. 265.

8 RIEMANN, ¢ (Kuvres,” 1898, p. 165.

9 MELLIN, ¢ Acta Societatis Scientiarum Fennicae,” tome 29, No. 4.

10 BARNES, ¢ Phil. Trans. Roy. Soc.,” A, vol. 199, pp. 411-500.

11 BARNES, ‘Cambridge Phil. Trans.,” vol. 19, pp. 322-355; pp. 426-429; ¢Proc. Lond. Math. Soc.,
ser. 2, vol. 3, pp. 253-272, and pp. 273-295.

12 Po1ssoN, ¢ Journal de I'Ecole Polytechnique,” tome 19, p. 349.

13 Jacosl, ‘ Gesammelte Werke,” vol. 7, p. 174.

14 HANKEL, ‘ Mathematische Annalen,’ vol. 1, pp. 467-501.

[One of the referees has pointed out that I had omitted to mention the brilliant investigation of
STOKES, which remained long unknown to continental mathematicians. STOKES obtained the asymptotic
expansions of the solutions of BESSEL’S equation for complex values of the variable in two papers published
in 1857 and 1868 respectively (‘Cambridge Philosophical Transactions,” vol. 10, p. 105 ; vol. 11, p. 412).
The reader may also notice SToKEs’ ¢ Cambridge Philosophical Proceedings,” vol. 6, p. 362, and ‘Acta
Mathematica,” vol. 26, pp. 393-397.]

1% Hurwirz, ¢ Mathematische Annalen,’ vol. 83, p. 246.

16 'WEBER, ‘Mathematische Annalen,’ vol. 6, p. 148,

17 N1erseN, ‘ Handbuch der Cylinderfunctionen,” 1904, pp. 156, &.
18 WANGERIN, ¢ Encyklopidie der Mathematischen Wissenschaften,” Band 2, A, p. 748,
19 HossoN, ¢ Phil, Trans.,’” A, vol, 187, pp. 443-531. ”

2 K2
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functions. Here for real values of the variable STokES! first gave asymptotic expansions, and ORR? has
recently extended his results to general complex values of the argument.

Quite recently MiTTAG-LEFFLER® has constructed the new function E, (¥) and investigated its
asymptotic behaviour,

Tt was, however, in the theory of linear differential equations that POINCARE! first pointed out the use
of divergent series as solutions in the neighbourhood of infinity, and laid the foundation of a rigorous
theory of such series. The continuation of his investigations has been the subject of many researches,
notably by KNESER and HorN. For references in this connection I may refer the reader to Forsyr’s
‘Theory of Differential Equations.’s

Another connected series of investigations may be mentioned. HADAMARDS first .gave a remarkable
theorem as to the maximum value of the modulus of an integral function defined by TAYLOR’s series on a
circle of large radius. Other theorems of similar type are due to BorrL” and BouTroux.® Valuable,
however, as such theorems are on account of their generality, we need complete asymptotic expansions
before we can adequately classify integral functions. Further references will be found in BoOREL’S®
text-book.

There is a close connection between the asymptotic expansions of certain types of integral functions
and what BOREL!Y has called the associated functions defined by TAYLOR’S series of finite radius of
convergence. This connection enables us to investigate the singularities of many types of such TAYLOR’S
series, and thus connects the theory with a whole series of investigations. Reference may he made to the
work of FABrY,!! LE Rov,'? LINDELOF,!® and LEAU.* A very complete bibliography of this branch of
modern mathematics is given by HADAMARD.!S

§ 2. In the present paper the author attempts to give unity to the investigations of asymptotic
expansions of integral functions defined by TAYLOR’S series by taking various standard types of such
functions and applying new methods of contour integration so as to get, as simply and elegantly as
possible, complete asymptotic expansions. For each function investigated we find the nature of the
behaviour at infinity. The investigation may be regarded as preliminary to the formation of a classified
table: it is complementary to that previously carried out for functions defined as products.

It is hardly necessary, perhaps, to say that no methods, however powerful, will apply to every function
that can be constructed by a TAYLOR’S series. Just as, in general, a TAYLOR’S series admits its circle of
convergence as a line of essential singularity, so the general integral function, which we may define by a
TAYLOR’S series, will not admit the same dominant asymptotic expansion for any range of values of arg z,
however small.

! StokEs, ¢ Cambridge Phil. Soc. Proc.,” vol. 6, pp. 362-366.

2 ORR, ‘Cambridge Phil. Soc. Trans.,” vol. 17, pp. 171-200; pp. 283-290.

3 MrTTAG-LEFFLER, ¢ Comptes Rendus,’ vol. 137, pp. 554-558 ; ¢« Acta Mathematica,” vol. 29.

¢ POINCARE, ¢ Acta Mathematica,” tome 8, pp. 295-344.

5 ForsyYTH, loc. cit., Part IIL., vol. 4, 1902, p. 341.

6 HADAMARD, ¢ Liouville,” sér. 4, vol. 9, pp. 171-215.

" BOREL, ‘¢ Acta Mathematica,” vol. 20, pp. 357-396.

8 BouTROUX, ‘ Acta Mathematica,” vol. 28, pp. 1-128.

® BoREL, ‘ Lecons sur les Fonctions Entiéres,” 1900.

10 In the memoir just cited.

11 FABRY, ‘ Annales de I'Ecole Normale Supérieure,” sér. 3, tome 13, pp. 367-399; ¢ Acta Mathematica,’
tome 22, pp. 65-87 ; ‘Liouville,” sér. 5, tome 4, pp. 317-358.

12 Lg Rov, ¢ Annales de la Faculté des Sciences de Toulouse,” sér. 2, tome 2 (1900).

13 LINDELOF, ¢ Acta Societatis Scientiarum Fennicae,” tome 24, No. 7.

14 LrAv, ‘Liouville,” sér. 5, tome 5, pp. 365-425.

15 HADAMARD, “La Série de Taylor et son prolongement analytique ” (‘Scientia,’ 1901).
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INTEGRAL FUNCTIONS DEFINED BY TAYLOR'S SERIES. 253

In conclusion, I must mention a paper of HARDY! in which he obtains some of the present results.
He was led to the question of asymptotic behaviour by a desire to obtain approximations for the large
zeros of integral functions, one of the subsidiary problems which a general knowledge of integral functions
will solve. His paper was sent to me in August, 1904, in the capacity of referee to the London
Mathematical Society. He had obtained the first terms of the asymptotic forms of the function which 1
call Gg (z; 0) in the case where 8 and 6 are real. In my reply I said that I had already obtained complete
expansions for general complex values of 8 and 6. Such results Mr. HARDY has since published in the
revised form of his paper. The reader will find it instructive to compare our respective discussions of
the question. :

[Note added March 21, 1906.—The Council of the Royal Society suggested that the paper in its original
form contained so many developments that it was more of the nature of a treatise than of a paper to be
published in their Transactions. In consequence it has been considerably compressed, and statements of
results have been in many cases given in lieu of detailed investigations. Developments of such a nature
will, I hope, with my subsidiary investigations, he suitable for publication elsewhere. In compressing the
paper, certain changes have at times been made in the mode of presentation. Whenever such a change
has been made, or whenever a result has been stated which had not been originally obtained, the number
of the corresponding paragraph is placed in square brackets [ ].]

Preliminary Definitrons and Theorems.

§ 3. The function f(x) is said to admit the asymptotic expansion
PR L
x

for a given range of values of arg x, when || is large, if the following condition is
satisfied. We put

—e = S _R
f(x)—c, S T o -
Then it must be possible, for any assigned value of n, to find a value X for |x| such
that, whenever

lz| > X, |a"R,| <e,

where e is any arbitrarily assigned small positive quantity.
The solution of linear differential equations often gives rise to series of which the
simplest type is

the series within the brackets being divergent.
We say that f(x) is asymptotically represented by such a series for any value or -
range of values of arg @ under the following conditions.

Put

'f@%&&ﬁ%+m+%]=Rw

! HArDY, “On the Zeros of Certain Classes of TAYLOR’S Series,” Part IL, ¢ Proc. Lond Math. Soc.,’
ser. 2, vol 2, pp. 401-431, '
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Then for any assigned value of n it is possible to find a value X for |#| such that,

whenever |z| > X,
le7"2"R, | < e

where e is an arbitrarily assigned positive quantity.

It is evidently possible that an asymptotic expansion may hold for some values of
arg « and not for others,

§ 4. The following definitions give precision to subsequent statements.

When we say of a quantity J (x, k) that, for any assigned value or range of values
of arg x, it is of order less than 1/|a|* when || is large, we mean that for any
assigned value of % it is possible to find a value X of 2 such that, when |2 > X,

|J (2, k) | < e,
e being defined as before.

When we say that J (x, k) tends exponentially to zero with 1/|x |, we mean that
it is such that, when || > X and R (z)> 0,

T (e, B | < e,

p being a definite finite positive quantity.
§ 5. Our fundamental procedure is based upon the following theorem.
Suppose that, when |z| is large, we wish to find an
asymptotic expansion for the integral

= [ SR ()

The integral is taken round a gamma-function contour C
c which encloses the origin and embraces an axis P from the
T origin to infinity along which 3 («z) is positive.
In the subject of integration f(z) is a function which, for
0 values of |z| </, admits the convergent expansion

SO =3 al-).

Further, f(z) is such that the integral I is convergent. This condition, of course,
limits the behaviour of f(z) at infinity along the axis P. Suppose that the plane of
the complex variable z is dissected by lines passing away from the poles of f(z) to
infinity in a direction away from the origin. We assume that the contour C does not
contain or cut any of these lines.

Then the integral I admits the asymptotic expansion

___l; —zz {__ ,\Btn—1 ], — X Cn .
00"277Joe (=) dz nz:oI‘(l—B—n)m‘”"

n=

Divide up the contour C into two parts L and M. L lies wholly within the circle
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INTEGRAL FUNCTIONS DEFINED BY TAYLOR'S SERIES. 255

of convergence of f(z) and, on L, |z| =7, where I’ = [—e and € is a positive quantity
as small as we please. M forms the remainder of the contour.
We have
k=1

R (e =yt K FOER RGO el

=1L+1, (Say), where I, is the integral taken along the contour L and I, the sum of
the integrals along the two parts of the contour M.
In the first integral I, put xz = { and let I/ be the transformed contour. The

integral becomes ) . o
sz L[5 e (Yo a

For any assigned finite value of £, however large,

(-3 za (-2

< [Ck] + |Ck+1ll,+ |0;;+2ll,2+-..

4 <€\2 l
—C - Cy. =) =
Cr k+1x+ k2 96/

This series is absolutely convergent and independent of z or { We may therefore
say that |

(-7) 22

where R, is independent of « or {, and is finite when % is finite.
Hence

<: R’k;

1

L< [l Rel (=02 dg).

L
o
Thus |2f**7'I;| can be made as small as we please by taking || sufficiently large.

Consider in the next place the integral I,

If the original contour cut none of the lines of
dissection of the plane, it may be closed up as in the
figure. For, as we pass over no poles of the subject of
integration, by CavcHY'S theorem we do not alter
its value. The contour integral I, can therefore be
replaced by

S0 7B [ e [ fo)='3 e (—-z)":l &,
o n=0
a line integral taken from the point « along the axis
P to infinity.
If we put z = a+{/x, we get

L= ST oo ot o Yo f (g 3

1
o =0

Cn (—a—{/x)”] difx,

and the integral is taken along a line for which & ({) is positive.
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By our original hypothesis the integral is convergent. It is finite for any assigned
finite value of %, and when |z| is very large it tends to a finite limit.

Hence |I,| tends exponentially to zero with 1/|x]|.

Therefore for all finite values of k¥ however large we may take |x| so large that

=S 6feD (1—B=n)| |2#*1|

n=0

tends to zero as |x| increases.
Therefore I admits the asymptotic expansion

; Cof 2P (1= B—n).

Inasmuch as f(z) admits 2 ¢,z" as a summable divergent series on the dissected

plane, we may say that, for our process for deriving an asymptotic expansion from an
integral of the specified type to be possible, the contour C must be such that for all
points on and within it f(z) must be representable by the summable divergent
series.

Parr 1.

The Function G (x;0) = b O o 1) o)

§ 6. The function G (x; ¢) is a particular case of the function G, (z;6) which will
be considered in Part ILI. It can be discussed by more simple methods than are
used in the more general case, and some of the formule can only be deduced from the
latter by employing the calculus of limits. I give here a brief summary of results
and refer the reader elsewhere* for detailed analysis. We assume that ¢ is not zero
or a negative integer.

I. By considering the contour integral

-1 f L(=s)@ ;.
2m ) s+46
we can prove that

G(—a;0) = —¢= 5 =1 0=m)  (0=1)...(0=k=1) gy g_gyy,

u+1
n=0

IL If |arg x| <,
G(—x;0)—zT(0) = -—m‘of ey’ dy,

where the line of integration is straight, tends to infinity in the positive half of the
y-plane, does not cut the negative half of the real axis, and avoids the origin.

* See the ¢ Quarterly Journal of Mathematics,” 1906, vol. 37, pp. 289-313.


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

A \
I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

INTEGRAL FUNCTIONS DEFINED BY TAYLOR'S SERIES. 257
IIT. If |arg z| <m, we have the asymptotic expansion
« (0=1)...(0—n)

mn+1

G(—x;0)=T(0)ax"—e “’”2

When |arg | is very small, we have the asymptotic expansion

G (w;0) = ¢ 3 U=0):ln0),
n=0
These expansions are truly asymptotic in the sense of § 3.
IV. The large zeros of G (x f) occur near the positive or negative directions of the
imaginary axis.

Parr I1.

n

The Function g (x; 0) defined, when |x| <1, by the TAYLOR'S series 2 ol
n=0

§ 7. This function is, in BorEL's language, the function associated with G (x;6). It
is a particular case of the more general function considered in Part IV. The detailed
analysis is given in the paper to which reference was made in Part L

I. The function g (x; 6) can, for all values of « except those which lie on the real
axis between 1 and +oo (the limits included), be represented by the system of
integrals

1 . (N 2
o L)G (w2 0) log (—2) e*de,

where D is a contour which encloses the origin and embraces some line in the positive
half of the z-plane along which the integral is finite, and where log (—z) is real when
z 1s real and negative and has a cross cut along this line.

II. We deduce that the only finite singularities of ¢ (x ; §) must lie on the real axis
between @ = 1 and « = + oo (the limits included).

III. By using L, coupled with the asymptotic expansion of G(m f), we can show
that, if |arg x| <7r/2 and |(1—x)/z] <1,

~g(z;0)=p (8)e = 3 (=) 0m) nf? {log (1 =)= (n+1)}.
This formula gives the nature of the singularity of ¢ (z;6) at # = 1, and shows
that g (#; ) has no other singularities in the finite part of the plane. ‘
IV. The function xg (% ; 0)+ ' ° log (1 —x) satisfies the differential equation

-6

dn 1=
x%-i—(ﬂ 1)17 _C,L—l_—x—'

VOL, CCVI.—A, 2 L
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258 MR. E. W. BARNES ON THE ASYMPTOTIC EXPANSION OF
By considering this equation we may again deduce the expansion, valid when

R (x)>1,
g(x;0)+x™" log (1—x) = {4 (1)— ()}~
L5 (=) (0=1).. (6‘——%)<l+ 1)

n=1 aﬁ"ﬂ n ! 1 o My ’

V. We may equally show that, when |1—x| is sufficiently small,
g (v ; 0)+log (1—x) = ¢ (1)—¢ (0)+log x— = S, (0) (log x)*/n !,
» n=1

where S,_; () is the (n—1)" simple Bernoullian function of # of parameter unity.
VI. When @ is not a positive or negative integer or zero, we have, if |x|>1, and
|arg (—x)| <, |

sin 70

9(@30) = = 3 = (=)

This formula gives the asymptotic value of ¢ (« ;) when || is very large.

Parr 111,

xn
The F’M?’Lctzon G (%‘ 0) = m;
§ 8. This function is the generalisation of that considered in Part I. We assume
that 0 is not zero or a negative integer, and further that

(n+0)* = exp {Blog (n+0)},

wherein the absolute value of the imaginary part of log (n+0) is less than .

If @ be real and negative, this convention fails to define (n+6)* for those terms
for which (n+6)<0. In these cases we may assume that the imaginary part of
log (n+6) is equal to +mr. ‘

§ 9. Suppose in the first place that 38 ()>0. Then we have the following
lemma®* —

o'l (=s)
(s+0y
of the great circle at infinity for which R (s)>—I, where [ is any finite positive
quantity, provided the circle pass between the points s =mn, n being a positive
integer.

The same integral is finite when taken along any parallel to the imaginary axis in
the finite part of the plane, which does not pass through finite singularities of the
subject of integration.

If |arg x| <m/2, the integral _[ ds vanishes when taken along any part

* With this theorem the reader may compare the method used by the author to obtain the asymptotic
expansion of the multiple gamma function, ¢ Cambridge Philosophical Transactions,’ vol, 19, $ 55-b7,
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The second part of the theorem is true, since when s = u+w and |v]| is very large,

|T' (—s)| behaves like exp{—j—r |v] } .

The first part follows from this fact in' combination Wlth the asymptotlc expansion
of T' (—s) for complex values of s. ' .

§ 10. If L, be a contour parallel to the imaginary axis and cutting the real axis
between s = 0 and s = —1, the contour, if necessary, having a loop to ensure that
—0 is to its left as in the figure, then

G (=230) = —g [, iy

27n

-(k+D

L, Ly

-For by the lemma we may bend the contour round until it becomes the contour
L, of the figure.
The residue of the subject of integration at s = n is

__ (=)
;[ig (n+0) Grop & (7nme) = (n+0PT (n+1)
Hence by CaucHY's theorem we have the proposition stated.
§ 11. Let L, be a contour parallel to the imaginary axis (except for a loop round
—0) which cuts the real axis in s = —\ between s = —k and s = — (k+1), then

GB(—-w;é’)————.( —S—Ib—ds

2m J1, (s+0)°

This follows from CavcuY’s theorem combined with the second part of the lemma.
§ 12. The integral along the straight parts of the contour may be denoted by I,.
2 L2
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It is evident that |«'T,| tends to zero as |x| tends to infinity for any finite value
of k.
In the remaining part of the integral put s+6 = —y and we find

Gy(—w;60) = =2

2

f (=y) 2T (y+0) dy+1,,

the integral being taken round a contour C,, which encloses the origin and embraces
the positive half of the real axis up to the point A—13 (6).

The poles of I' (y+0) are at the points —f0—», r =0, 1, 2, ...

Hence, within a circle of radius equal to the minimum value of |0+7], it admits

the convergent expansion
2T (0) g

0 71

i M

I will show that G;(—x ;) admits the asymptotic expansion
> o)
2;' _21'_ —aj-( )T (0)( y)r-pe viogz fy

the integrals being taken round a gamma-function contour which-encloses the origin,
embraces the real axis, and passes from positive infinity to positive infinity again.
This expansion may evidently be written

. (=)T90)
2o PIT (B—1) (log )"

We have, if m be a finite positive integer,

: - (=) T (6)
Gip (=3 6) ~ i 1'20 ! I'(B—7) (log ) ~#*!

J’c (=) ﬁw-/[p +6) - > u_ :] /HML W)y-ﬁ*r " = (0)0!9 (1)

=0

2.77
the latter integrals being taken along the positive half of the real axis.

If we denote the sum of these integrals by J, we 1eadily see that, for any finite
value of m, we can by taking || sufficiently large make |Ja*| as small as we please.

§ 13. We have now to consider the first integral in (1).

Let n be a point on the positive half of the real axis just within the circle of
convergence of I'(y+6), so that || < the minimum value of |#+n|,n =0, 1, 2,...

Then the first integral in question can be split up into two others, I, and I, (say).
We denote by I, the integral round a contour M (say), enclosing the origin and
passing from the point % to this point again, n being on the cross-cut which renders
the subject of integration uniform. The remaining integral I, will be equal to

07 oo [ e [y 40) - 3 TUOT Y g,
n

k3 r=0
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If ,,Gy. be the maximum value of

%i&f.@y’ﬁ{l‘(yw)— 3 FMH

m =0 7/'!

on this line, we shall have
[ To] <uGilz™77] [A=RR(6) —7|.

Thus for all finite values of k and m, however large, we can take || so large that
|®+=<I,|, where €>0 and as small as we please, tends to zero as nearly as we please.
Finally the integral I, '

= L gof (cpyrmr] 3 2O }
o j‘M( Yo {r=§+1 Y dy.

By the substitution % = y log x, we see exactly as in § 5 that | Lz’ (log #)™#**"| can
be made as small as we please by taking || sufficiently large.

Hence " '

—2;0)—a0 S (=) I (6)
Cp(—230)—« Eo'rII‘(,B—-r)(logm)"B“

ﬁ+1+ml

|2’ (log )~

can for any finite value of m be made as small as we please by taking || sufficiently
large.

Therefore, provided 13 (x) <0 and @ is not real and negative, we have the asymptotic
expansion

» oo ® =Y 1"(8)
Gu(o30) = (~a)log (<o)} 3 ey IS

the principal value of log(—), which is real when x is real and negative, being
taken. .
§ 14. We proceed now to obtain the asymptotic expansion of

Ge(; 0) = Ox”/n! (n+0)°
in the case in which R (x)> 0.

We will assume that ¢ is not real and negative. In this case the points 6, +1,
0+2, ... all lie within an angle, vertex the origin, which is less than 7.

Let the bisector of this angle be the line 1/L, and let L be the image of this line in
the real axis. The figure is drawn for the case in which the imaginary part of 6 is
positive. |

Suppose now that (—2)** = exp {(8—1) log (—2)} when the logarithm is rendered
one-valued by a cross-cut along the axis L, and log (—#) is such that it is real when z
is real and negative.
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L
T8 «0+1 o Otz .

Then*

T (2177 ,3) L( )/3 1= 040z (], — (g_'_%)—ﬁ

when the integral is taken along a contour, as in the figure, embracing the axis L,
and (0+n)"f = exp [—Blog (0+n)], the logarithm being rendered one-valued by a
cross-cut along the negative direction of the axis of 1/L, and log (6+n) being real
when 6+n is real and positive. It is a value of (0+n)7% so defined which we suppose
to intervene in the fundamental series by which G, (x;0) is defined. [Vede § 8.]

We now have '

Gy (;0) = (1 B)J( —2) s X —tnz g,

n= On
= ﬂ_;f__) L(—z)‘*"1 exp{—20+e 2z} d

§ 15. We may deform the original contour L till it has the position of the figure.

>

0

R

It thus consists of a small curcuit round the origin, the real axis from 0+ to R
described both ways and a line P from R to oo parallel to the original direction of the

* ¢M. G. F.” p. 388. [In this manner reference will be made to the paper cited in § 9.]
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axis of the contour which is also described both ways. We suppose that the cross-
cut which renders (—2)*~" uniform has been deformed with the contour.

The value of the integral in the two directions along the final line P is, putting
z = R+,

I = (PY R+ exp {—RO-L0+e "2} di,

(B)y
the principal value of (R+{)*", which has a cross-cut along the negative half of the
real axis, being taken. The integral is a line integral along P.

On this line B ({) > 0. Hence the maximum value of the real part of e ™ %x is
e *|x| K, where K is a finite quantity independent of R and |x|.

Hence

|L| <grgyexp {¢ 7"« K-R& ()} [R*]

< [O(P)|<1+E> .

The last integral is convergent and tends to a definite finite value Q as R increases.
When |a| is large let us take Ix[ =¢® Then ’

1“(B)
|exp (—00)| |dL].

expK {log|| 20t Y

Eld

L] < =5

r (B)

When R (6) > 0, |LI;| will obviously tend to zero as R tends to infinity, and this is
true of |e™7I,| for all values of # which are not real and negative, if | (x) > 0.

§ 16. We have now to consider the value of the original integral along the contour
which consists of the small circuit round the origin and the real axis described both
ways from 04+ to R. We denote this integral by I,, Make the transformation
1—y=¢"% Then corresponding to the original modified contour we have a new
contour Q as in the figure. This consists of a small circuit round the origin and the

- —®

real axis described both ways from 0+ to R/, where R/ =1—¢™® The former line
P from R to o becomes an infinite spiral from R’ round the point 1 up to this point,
the whole spiral being contained within a circle of radius e

We now have

1= o LB flog (1) (g o7 dy,

the integral being taken round the origin from R’ back to R/ The many-valued
functions which intervene in the subject of integration are such that, when |y| < 1,

log (1=g)P™* (1=9) = (=) S eu(=9) -+ . . . (1)
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the principal value of (—#)°~", which is real when y is real and. negative and has
a cross-cut along the line joining 0 and 1, being taken.
Evidently ¢, = 1. For the evaluation of the other coefficients of the expansion the

reader may refer to a paper by FERAND.*
Now

z "P(I—B) — n+B—1,—zy ],

e Qr [an( y) e jd.’/
_ zLF(l“‘B) ntp=1,=ay ( ) " +n=1,2(1—y)
=0 27__ [ Cn ( J) jdy (B) -‘.1—.9 ¢ JB ery dy:

where G is a gamma-function contour enclosing the origin and embracing the positive
half of the real axis and the second line integral is taken along the real axis.
Therefore

L (1-R) il gy = gt L (1=B)
¢ om Lacn( yyriTedy = ' (1—B—n)xf*" T
where |J,| < K’,|exp {e™®x}| < K',|exp cos (arg x)|, and K’, is a finite positive
quantity for all finite values of n.
Hence

L — ¢ El cI‘(l B___ e L____P(l_'g)f [2 e (=y)” 1] e dy— kél Jo
Q n=0

n...OI‘(]. )w +8 27T n=Fk

But as in § 5 we see that

- @
xl3+k—1§ [2 Cn(__y)ﬁm—x] e
Q Ln=k

can be made as small as we please for any assigned value of & by taking | x| sufficiently
large.
Hence, when R (x) > 0, ™I, admits the asymptotic expansion

i _ar-g)
2 T(1—B—n)z™"

Reverting to the value which we obtained as the quantity greater than |I,|, we
see that e Gy (@ ; 0) admits, when 8 () > 0, the same asymptotic expansion.

§ 17. In the foregoing investigation # may have any finite value while not real and
negative (zero included).

But the expansion is valid even if § be real and negative, provided it be not a
negative integer.

* FERAND, ¢ Bordeaux Procés Verbaux,” 1896-97, pP- 93-97; quoted in the ‘Fortschritte der
Mathematik,’” vol, 29, p. 375,
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For if 6 lie between — %k and — (k+1), k being a positive integer, we consider
G, (x; 0+F).
By the theorem just proved, G (x; 6+%) admits an asymptotic expansion.

dk k=1 mn
Also Gy (w3 0+) = 5[ Gy (3 0) - 2rey 1)(77,—{—0)5]'
Hence, since by a theorem due to PoINCcARE, we may integrate an asymptotic
series, the general result follows.*
Finally we see that, if 8 (x) > 0, and & be not zero or a negative integer, the
function Gy (z; #) admits the asymptotic expansion

e 5 _al'(1-8)
.'JGB n=0 F (]_"‘B‘—‘n) x" '

The coeflicients ¢, are determined by the expansion

[lo_g%fﬂ)]ﬁml (1=y)t = 020‘,0 ¢ (—y), valid where |y| <1.
§ 18. But when 3 (#) < 0, we have also obtained an asymptotic expansion, and
the restriction that @ shall not be real and negative can be replaced by the restric-
tion that # shall not be zero or a negative integer. :
Combining the two results we see that, when |z| is large and 8§ not zero or a
negative integer, the behaviour of G, (% ; ) is given by the sum of the two asymptotic
expansions

¢ 5 el (1-B) oo {1 % (=)T® (0)
P T (=p=n)e T (=) [log (=) T s D) T (B=n){log (=2)J* (4)-

This double expansion is valid for all values of arg « between —u and =, except

possibly those for which |arg x|= g . It s, as we shall see later, true even in these
cases.
§ 19. When B8=1, the function reduces to G (z; ) =

previously considered.

@

xﬁ

n-o I (7’L+ 1) (77/+ 0): VVthh was

The ¢’s are now determined by the expansion (1-%)""' = % ¢,(—y)"
n=0

Therefore ¢, = (—1)(0-2) ... (0—n)/n!

The asymptotic formula (A) therefore reduces to

; (=) (-1)..(0-n) (—x)~r (6),

xn

which was the result previously obtained (§ 6, III.).

* The matter does not seem of sufficient importance for an elaborate ploof I may, however, refer the
reader to Mr. HARDY’s paper, p. 419 (loc. cit., § 2).

VOL. CCVL.—A. 2 M
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§ 20. We have obtained the asymptotic expansion of G, (x; #) in the two cases
when R (x) > 0 and when R (x) < 0 by separate methods. By this, however, we are
left in doubt as to the behaviour of the function on the imaginary axis. We proceed
now to obtain the two expansions simultaneously. A

We shall limit ourselves to the case R (6) > 0, as the result can then be extended
to all values of 6, except those which are zero or a negative integer.

Ag previously, we have

Ge(x; 0) = I (1 B)I (—2) " exp{—z0+e"x} dz,

where now, since I8 (6) > 0, the contour L can be taken to embrace the positive half
of the real axis.
Hence

Gg (x5 0) = ‘_E_%_T"_B) f (—2) " exp {—20+e "} dz + TB_ [ P exp { —z0+ex} dz.

The first integral is taken round a circle of radius % surrounding the origin,
beginning and ending on the positive half of the real axis, which is a cross-cut to
render (—2)°~* uniform. The second integral is taken along the real axis.

If 1 (B) > 0, the first integral vanishes as » approaches zero. For simplicity we
consider only this case. The limitation simplifies the statement of the proof: its
absence does not affect the argument.

By the substitution 1—y/z = ¢™, we now obtain

r(B) Gy (s ) =1 jo[— log <1 —gﬂﬂ <1 —-39_/0>0_1@z—ydy,

the integral being taken along the straight line from O, the origin, to B, the point .

L

Bl B, / -/7 D
A Ve
/
/
/
i /
7] /

@
/
A
/
/
/
/
/
/
/

e

0

Take now the integral

-1 27\0—1
j[— log (1 - %)]ﬁ <1 —o_yc> ey
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round the contour AOB,B,D of the figure. This contour consists of the real axis
from A (+ =) to O, the origin, the line OB,, a circular arc B,B; of radius e round B as
centre, and the line B,D, which passes to infinity parallel to OA.

B—1 0—1
If we take throughout that value of [— log <1—-—g>] <1——g> which is one-

valued on the plane dissected by a cross-cut drawn away from the origin from B to
infinity, and which is therefore represented in this region by the series (summable

g—1 * n
and divergent when |y|>|x|) <%> s, <— %> , we may use CAUCHY'S theorem.
o 2=0
We thus see that

Ca(r30) = (=108 (1=9)] " (1= evay
L | [-roe(-0)] 7 (<2 eran L.

The integral I; is the integral round the arc B,B,. It vanishes in: the limit when
e = 0, since R (0)>0. The two line integrals are taken along OA and B,D respectively
parallel to the positive half of the real axis. In the second integral we have made
the substitution y = y—u. ,

The first integral by the general theorem of § 5 admits the asymptotic expansion

e g (=)al(B+n),
xf a0 T(B)a”

§ 21. We proceed to consider the second integral.
We have to seek to find on BD the value of log[—log (—%/x)] which on OB
admitted the expansion

- )| =1log¥ Y
log[ log<1 m>] logm+(...)m+...,

and which is represented by the continuation of this summable divergent series.

Let o« = re, so that, its principal value being taken, log (—x) = log r+(6—m)
6 being the angle of the figure. Let n = pe'®*%~™ g0 that ¢ is the angle given in
the figure. We assume that » is large, and consider the shaded area bounded by
p=1landp=mn »

When —y/x is real and positive, |9 | being less than |z, log[—log (—n/x)] is real.
We will show that, for values of y on B,D within the shaded area, we must take

log [— log <— oﬂcﬂ = log {log 7+ (0—m)} + log [1—101gogj:—(:9(gf;)ﬂ] . (2),

where, within the shaded area, the final logarithm is such that
_ _log p+u(0+¢—w)}]

P [(B 1) log {1 log 7+ (0—m)

2 M2
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admits the expansion

2 (=T (B) log pe 0+ )
7501’(,3—%) Flog'r—H(H— ) ]

Evidently the only trouble which arises is with the specification of the imaginary
parts of the logarithms. Now when » is large and 7>p>1, the imaginary part of
log [—1log (—n/x)] = log [log r[p—wp] is —tan™" {¢p/(log #/p)}, the principal value of
the inverse tangent which lies between 0 and 7/2 being taken.

The imaginary part of log (log r+f—=) is similarly —tan™ {(w~0)/log r}, the
inverse tangent again lying between 0 and /2.
log p+u (0+¢—m)

log 7+ (0—)
which is represented within the shaded area by the series

- i L[legpre 0y

om | log rte(0—)

Also the imaginary part of log [1— ] when the value is taken

is also negative and lies between 0 and /2.

When » is large and p is just greater than unity, all three imaginary parts are very
small. The equality (2) is therefore established.

§ 22. We see then that within that part of BD which is within the shaded area

[ 1o (~2)] " = Dog (—ayp { 2, (N [ o)

the principal values of log n and log (—x) being taken. And on the remainder of BD
between ¢ and o the expansion continues to hold as one which is divergent but
summable. [An exceptional case occurs when @ is real and negative, when a slight
modification of the contour must be taken to avoid the point O.]

Therefore, by the fundamental theorem of § 5, we have, when R (0)> 0, for the
asymptotic expansion of the second integral,

” ye—lo(> log ¥/]
Sy e 2T (E= )F((n)ﬁ—l'i)fgloyg( o Y

— oo (—x) P! (LI (0)
= (=)™ [log (—=)] 3_:01‘(7;,4-1)11( n) [log (—a)]"

- Finally, therefore, if 38 (6) > 0, we have Gj(x;0) represented by the sum of the
two asymptotic expansions

¢ 5 (L GTEL) | ol (e § — (2P T000)
2L @ e () g (—2)] n’P(B ) [og (=2)F

This result is valid for all values of arg «, with the assigned prescription for log (—x).
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The Asymptotic Behaviour of G, (x ; 0), when B (x) > 0, and B tends to Infinity.

§ 28. The previous asymptotic expansions give us no indication of the behaviour of
G, (z; 0) when B grows indefinitely, and 3} () > 0. For although we have seen that,
so long as B is finite,

G (; 0) = e’g—@,

X

where |J (x)| tends to a definite finite limit when |x| grows indefinitely, yet as B
tends to infinity it is possible that |J (x)| will also grow indefinitely. This possibility
must now be examined.

§ 24. We base our investigation on the properties of the function

< T'(n
S(s) = Eo I'(n +(1) (731 0y

The series is convergent if §] (8+s)> 0. For, if o0 = —s—1, the general term is

equal to
I'(n+o+1) Z__F(UH){(H >e %} {< n>6 }
I'(n+1)(n+0) exp{— ( >} (n+0)°

~ exp [0'{% +...+ -71-1}:] e

3

I [( 14 %)e—ﬂ(n+6’)ﬁ

r=n+1l

_ exp 0,
= > ‘—- P _% . 0\ B
r:l;;[+1l__<1+~7:>6 ]nﬁ (1+;)

where 0, tends to zero and n tends to infinity.

Thus, however large the imaginary part of ¢ may be (even if it is infinite), the
series will be absolutely convergent provided 3 (8—o—1)> 0, that is to say,
‘provided & (B+s) > 0.

The following argument would have been more simple ; it would not however have
brought out so clearly that the imaginary part of o may be infinite.

If u, denote the nth term of the series,

Upry _ N—S n+6 '>B L . ;
Uy e+l <n+0+1 = 1=(B+s+1)[n+(...)[n"+ ...

Hence, by a known theorem, the series is convergent if 8 (8-+s+1) > 1.
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§ 25. We will now show that, if B (B+s) > 0, and R (6) > 0,

S(S) —_— 1 ’ =1,—0y —y\s
R =T LY O

the integration being taken along the positive half of the real aaxis.

N-1/__ _ —
Let (1_6_]/)3 - n=0 ( 8)1.(2'8:1-/:% 1) e_ny—l-aKN.

Then, if y=0, and R (s) > 0, and, as before, ¢ = —s—1,

. .| [(1 +g> @—%] -
|Bx|=| S (—8)"'(—S+n_1)@*m/ R ,
N =N 7! <7,=N ex {-—o'(_].'._l.. +!‘_>}
P Tt
ev«rﬁ [< 1+ g)&ﬂ tends to a definite finite limit as n tends to infinity.
r=1

Let p be 1ts maximum value when n = N.

Now

Then |Bx| =p 3 e™|[n®*|, where €, tends to zero as n tends to infinity.
n=N

Hence, if y=0, |By| =Ke™, if R (s) > 0, where K is a definite finite quantity
independent of N and v.

Hence, if Ty = [ 3°7¢™ Bx () dy,
0
L= K [ pomevixso) y,

Thus Ty tends to zero as N tends to infinity if B (8) > 0 and R] (s) > 0.
Now

— . * N1 __ _ _
I‘(I ) -"0 yre (1—em)y dy = f%j L yrrem™ ,Eo ( S)M(n ‘!9+n D) e 4 Ty
L N T (=)
T T (-s)T(B) nzz'o.[y nt ¢ dy+ 1y
1 I‘('n—s)

= =) S n(nggp T R (8)> 0.

Make now N tend to infinity, and we see that, if 43 (8) > 0 and R (s) > 0,

S(s) = FI‘((,E;) I:y’s"e"’y (1—e) dy.

But both sides of this equality are continuous and finite except for the poles of
'(=s), if ®(0)>0 and 3] (B+s)> 0. Therefore the equality holds under this
limitation,


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

A \
I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

INTEGRAL FUNCTIONS DEFINED BY TAYLOR'S SERIES. 271

§ 26. We will next show that, of s = u+w and B (B+s)>0, when |v| s very large,
S(s)| <Ke 11 where K s a finite quantity independent of v.
For, if 1R (6)>0,

S (s) ’1
r(=s)l T (8)

where K is a definite finite quantity independent of v.

But, when |v| tends to infinity, |I'(—s)|/e™*"!*! tends to a definite ﬁnlte limit.
We therefore have the given theorem if 1 (6) >

When 3 (0)30, we can, if |f| be finite, ﬁnd a finite number N such that
R (0+N)>0. We can write down a modified integral which shall express all but
the first N terms of S(s). The argument used above will hold for the modified
integral ; the proposition to be proved is evidently true for the first N terms of S (s).
And therefore we may establish that the theorem is true under the sole limitation
R (B+s)> 0, 0 not being zero or a negative integer.

§ 27. We will next show that, ¢f C, be a contour wn the finate part of the plane
parallel to the imaginary axis and culting the real awxis tn o pownt for which

B (s)> —R (B), and if B (x)>0, ¢~*Cy (x; 0)_—_j S (s) a*ds.

2aru

[ e ey < [ Iy (1= dy <K,

In the first place we see that this integral is finite. For the series for S (s) is con-
vergent if R (s+B)>0, and as |v| tends to infinity, |S(s)a’| <K |aB®|elvwsel-irlvl,

Thus the subject of integration tends exponentially to zero if |arg x| <.

Let now C be a contour embracing the positive half of the real axis and cutting
this axis in the same point as C;. As we are ultimately to make I (8) very large,
we shall assume that C, includes the origin.

Evidently by CAucHY's theory of residues

_ 1 _ . _ ® (_)mmn+m— —om
—27T—LLI‘(n s)ocols—”i‘.o = e
Hence if G (2 ; §) denote the sum of the first (N +1) terms of the series by which
Gg (5 0) is defined, )
1 s I'(n—s)
G(ei0) =—5- | 3 S (nrdy "%

Now, if |arg x| <3, |T (n—s) | tends exponentially to zero as » tends to infinity
if 1R (s) > a finite negative quantity, and if s be not in the neighbourhood of the poles
of T'(—3s).

Therefore the previous integral will vanish when taken round an infinite contour
for which 8 (s) > a finite negative quantity. Hence

Gz 0) =— L[ 3 T=9) g
e "Gy (x;0) =— 27L[0‘)Eon'(n+0) x* ds.
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Suppose now that N tends to infinity. Fach side of the equality tends to a
definite finite limit, and we have the given theorem.

§28. We will now show that, if 1 be o positive quaniity such that |n+6|> 1,
(n=0, 1, 2, ... ®), and of R be any finite quantity, however large, such that
B (B8) > B+e, where €> 0, e~ IG, (x; 0) = J (x)/a", where |J (2)] can be made as
small as we please, for all values of B (B) however large, by sufficiently increasing

For we have _ ) 1 s D (n—s) I
e PGy (5 0) = — 5 {01 )E@ 1q7(w(n+)0)5% ds.
- We take the straight contour to cut the real axis in the point —R—¢, where

0< e <e

Putting s = —R—¢'+w, the integral becomes
—R—E/_lf « T(n+R+d—w)l

27 Jo, n=0 n!(n+l9)“

From this integral we can show that |J ()| can be made as small as we please by
taking || sufficiently large. And as | B3] increases indefinitely |J ()| can be made
as small as we please.

We thus have the theorem enunciated. :

It is evident that by studying the singularities of the function 8(s) we could
obtain anew the asymptotic expansion of Gg(x;#) when 3 (z) > 0. This problem
I reserve for a future occasion. ’

x S do = & () (say).

Parr IV.
The Singularities of g, (x ; 6). )

§ 29. The function g, (x;0) defined when |z| <1 by series = a/(n+0)* can be
studied by the methods previously developed. -

We assume that 0 is not zero or a negative integer, and that S is not equal to zero
or a positive integer. When 8 = 1, the function becomes g (« ; #) previously considered
in Part II. When B 1is a positive integer, the function can be derived from the case
B = 1 by differentiation with regard to .

On account of the length of this paper I give some theorems relating to this
function, leaving the development of the theory for publication elsewhere.*

I The function g, (= ; 6) has a single singularity in the finite part of the plane. This
singularity occurs at & = 1 and is not an essential singularity. Near « =1, g, (x ; 6)
1s many-valued.

II. The function g, ( ; #)—gs ( ; 1) %'~ has no singularities in the finite part of the
plane, except the singularity due to '™ at the origin, and if |log x| < 2w, it admits
the expansion ‘

o 3 LBl (8, 6)~L (B, 1)},

where { (s, @) is the simple Riemann {-function of parameter unity.
* See a forthcoming paper in the ¢ Proceedings of the London Mathematical Society.’
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II1. The function g, (x; ) —T'(1—B) (— log )*'¢™° is one-valued near z = 1, and
in the vicinity of this point admits the convergent expansion

z (= n+11) Lo (B, 0),

where .+, (B, 0) denotes the (n+1) ple Riemann {-function of equal parameters unity.
IV. If @ be not real, the function

9o (@5 0)+.5 (25 =)™,

the negative or positive sign being taken as I(f) is > or < 0, is one-valued near
x = 1, and has no sihgularity at this point.

V. If 0 be not zero or a positive or negative integer, gs(«; 9) admits, when |z] is
very large, the asymptotic expansion

T (n)
_y 1 [leg(=a)P g (=) <sin 770) _
i 2 (0—m)? (—2)  w=on!T(B—n)[log (—x)]"

This theorem is true when B is a positive integer, in which case the final series is a
finite series of 8 terms. ’

When 6 is a positive integer, a modification of the formula can be deduced.

When 6 = 1 and B8 is a positive mteger we obtain SPENCE'S formula.*

V1. Similar analysis holds for the more general function defined when |z| <1 by

§ " [log (n+ 0)]"
n;_O (n + 0)

Parr V.

The Function Fy(x; 0) = = wx (nt0)
=07 ! (7’?/ + Q)B
§ 80. We proceed now to use the previous asymptotic expansions to obtain similar
expansions for very general types of integral functions.
Let x () be a function of = which outside a circle of radius ! admits the expansion

2 b,fa’, so that for values of » greater than an assignable quantity R, |b,| <",
r=0

where I/ > 1. / o .
Suppose further that the points 6, 0+1, +2... all lie. outside this circle, and that
the modulus of the least of them is taken to be > .

* DE MoRGAN, ‘Differential and Integral Calculus,” 1842, p. 659.
VOL. CCVI.——A. 2 N
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We proceed to show that the function

Lo\ . x"x (n+0)
By (@; 0) = 2 (n+0)PT (n+1)

may be written as the sum of functions
3 0,Geur (5 0),
r=0

and to obtain its asymptotic expansion when |arg x| < =/2.
We have at once

Fy(e; 0) = 3 %‘_[’g_b___Jr s ,__bk_+__]
- B ’ n=0 M ! | r=0 (7l+0)ﬁ+r o (7Z+0)ﬂ+k+’

If then £ > R, we have

' @ bk-i-r *® l,k+r Z/k ® lh‘
| mr0p | < a0 (a7 < [ 0] =
where p is the minimum value of |n+0].
The modulus of the series is therefore less than
Zﬂc+1 . ,
o =ty 0 r> 1
Hence
Fy(x; 0) = S 0,Gs0, (03 0) 4+,
where -

lJl<§ ’wln Zlk+1 '
S 2 0 T 0F (=7

Hence |J,| tends to zero as k tends to infinity, since |n+6]> 1. We thercfore
have

Fy(2; 0) = S b,Gyur (5 0),
r=0

the series being absolutely convergent for all finite values of |xz|.
§ 31. We will next show that, when |arg x| <m[2,

Fy(z;0) = fi[éor( S, +Ja(w)],

xf 1—-B—s)a* a”

where S, = é D wCsnl (1—B—m) and |J,(x)] tenol:s to zero as |x| tends to infinty.
0

m=

The coefficients ,c, are given by the expansion, valid when |y| <1,

[%@Jﬁﬂﬂ(l»—y)‘“ =30 (=g

n=0
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We have r ®
Fi(x;0) =3 b,Gps, (5 0) + % 1er3+r (x;0).
7=0 r=R+

Consider the second series. However large » may be, we may put

[6 b GBH(QC 0)' = T—’-ﬁjﬁ-l-
where, by § 28, ¢, can be made as small as we please by taking || sufficiently large.

Hence
2 0,Ggor (5 0) e R < 2 €nr <,

r=R+1

where 7 can be made as small as we please by taking || sufficiently large. For we
have only to take |a| so large that the quantities e, form an absolutely convergent
series.

Again, by the asymptotic expansion for G (x ; ), when |arg x| <=/2, we have

EbGﬁ_‘_r(x 0),____ R E[g rcnr(]'_l[)’_,r) _l_IN(x)]’

r=0 2" La=o T'(1—=B—r—n)a” o~

where the coefficients ,c, are defined as in the enunciation of the present proposition,
and where |Ty(z)| can be made as small as we please by taking |x| sufficiently large.
‘We therefore have

szW(x e)__[E;c_gzbmmli-(ll (; f) m) Jm(w)] .. (A),
where o =N and |J, (2)| can be made as small as we please by taking || sufficiently
large.

If, now, we take R>o and combine the two results just obtained, we have the
proposition stated.

§ 32. The reader will notice the far-reaching generality of the function whose
asymptotic expansion has been obtained. He will also notice that we have shown
that from the asymptotic expansion of each of a convergent series of functions we
have derived an asymptotic expansion for the function represented by the series of
functions.

§ 33. Let us now consider the asymptotic expansion of ¥y (x ; 0) when R (x) <O0.

We have seen that

Fﬁ(oc;ﬁ):%br(}ﬁw(m;ﬁ). R ()

Also, when |arg (—«)| <#/2, we have the asymptotic equality

. _ B+r+1l N r* (6 TJN x
Gw(m,ﬂ)—(—-) *{log (=2)} { VT (B+r— ?’E)F)(nﬂ()glog(—w)] +[10g(£92)]N}’

where |,Jy (x)| tends to zero as || tends to infinity.
2 N2


http://rsta.royalsocietypublishing.org/

\

) N

A
A \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)

a
fa \
A A

y i
Y 4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

276 MR. E. W. BARNES ON THE ASYMPTOTIC EXPANSION OF

By the previous investigation this equality is seen to hold good for all-values of 7,
however large. |

Let Fy(x) denote the sum of the first (R+1) terms of the series (1). Then,
asymptotically,

Fy () = (~2) {log <—x>}ﬁ~1§obr {log (=)}’

S (=) 1) (@)
{,Eo T'(B+r—n)T (n+1) {log (—x)}" * {log (—w)}N}

Tt is at once evident that any attempt to make R tend positively to infinity will

introduce a series in ascending powers of log (—). This series cannot be asymptotic :

it may be convergent, or it may be divergent but summable. In order to investigate

its nature, we shall limit ourselves to the case where 8 is a positive integer. In this

case the series proceeding in descending powers of log (—x) will be finite, and if we

take N = B+7—1, | Jx(x)]| is less than 1/|x |, when | 2| is large, however large / may be.
We have then :

o -1 ot (=) 1™ (6) D,
iy (@) = (—90) {log (=)} E [n =0 I'(B+7r—n) I‘)(n+ 1() zlog( —x) " it bed (oc):l

The double series may be written

(3 5.3 5[0 de iy

s=—p+1r=0 I'(B+s)I'(r—s+1)

Thﬁs

(=)’ {log (—a)}' P Fy (x) = = [10g((13~_fc3))] : :0 (_>Ir‘+(i{‘I—Osﬂk—:i (10)) ’

{log (=)} 5" (=) b T(6) , %
= T(B+s) z r(r+1) + 2 0, J ().

§ 34. Suppose now that R tends to infinity. The series |3 b,,J (z)| can, even
=0

when multiplied by any finite positive power of |z|, be made as small as we please
by taking || sufficiently large.

(=) BT (9) .
The series TEO T st 1)

value of |(n+6)], so that p is the distance of ¢ from the nearest of the points
0, —1, =2, ..., we have, if || <p,

F(w+05 s L (0)

m=0 F m+ 1)

e

Thus, since Lt |b,Y"| =1, the series is absolutely convergent, since p > /.

is absolutely convergent. For if w be the minimum

Therefore
1

i
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Again, where s is sufficiently large, |b,+,| <I”**, where ! >1; and therefore

R ("'Y b7’+s I‘(T> (0) s
1‘%0 F(?"I‘l) <Kl ’

where K is finite and independent of s for all values of R, however large, provided
> /s
Hence, when R tends to infinity,

{log (—=)}" "5 (=)' bml“”(e
si) (B—FS) ra) F( ‘ <K 2

{l'log (—x)}*
(18+3)} + L

where L is finite ; and thus the series is convergent provided |log (—x)| is finite.
We therefore have the asymptotic equality

i { o S VG A

+J(m)}(—9c)“’{log(—m)}""‘ R 1 5))

This equality is valid provided 9 (x) <0. The function J(x) is such that its
modulus, even when multiplied by |x|’, however large the finite quantity / may be,
can be made as small as we please by taking || sufficiently large. And ¢ () denotes
the integral function

I ()bt (0)
ETET S T ST (B )

Il
Mg

The quantity log(—w) is such that the modulus of its imaginary part is less
than /2.

We see then that the process which we have employed, even in the case where 8 is
an integer, makes the asymptotic expansion of Iy (x; 6), when R () < 0, depend on
that of the integral function of log (—x) which we have written ¢ {log (—x)}.

§ 35. We proceed now to apply the theory of contour wntegration to this problem.

We have

;)= 3 T

- n= 0(7’&+0)B (n+1)’

and x («) admits the expansion 3, b,/z" outside a circle of finite radius /.
n=0

We may represent F, (7 ; 0) by the contour integral

1 2T (—=s)y(s+6
AL,
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taken round a contour I, embracing the positive half of the real axis and enclosing
§=0,1,2,...0, but no other poles of the subject of integration. If I<|f+n],
n=0,1,2, ... 0, the whole circle of convergence of y (s+8), v.c., a circle of radius /
and centre —0, lies outside the contour L, If the inequality does not hold, the
contour I has to be indented to include s = 0, 1, 2, ..., but no singularities of x (s+6).
This is always possible if x (f+n) is not infinite for any positive integral (including
zero) value of n.

Suppose now that |arg (—z)| < af2. Then the integral will vanish along any
part of an infinite contour for which 3 (s) is greater than a finite negative quanity
k (say).

Hence, if |arg (—x)| < %,

o0 = - [ ST 0,

taken along a contour L, which consists of the infinite line s = —%, and a loop from
a point on this line which includes the singularities of x (s+#6), but none of those
of T'(—s).

Hence if we neglect terms of order 1/|x|*, we see that, when |z| is large and
|arg (—x)| < §m, we have

Fy(o:0) = — 27 [ ()t x (—g) e r (g0 dy. . . . (1)

2t

taken round a contour which encloses within its bulb the singularities of x (—y), but
none of the points —f, —0—1, —0—2,..., and which embraces the positive half
of the real axis. In this integral the principal value of log (—x), which is real when
 is real and negative, must be taken. It is by evaluating this integral for assigned
values of x(—y) that we can obtain the asymptotic expansion of F,(z;6) when
R (zx) < 0.

§ 86. Consider the case when B is an integer, positive or negative. In this case
the subject of integration is one-valued. The integral can therefore be taken along
a finite contour which encloses the singularities of x (), but not the poles of I' (y-+6).
The residues at the latter points will give rise to a finite number of algebraical terms,
t.e., terms which involve algebraical powers of w, if there are any such points within
the circle of convergence of x (y). Making due allowance for such terms, we may
take the integral round a circle just larger than this circle of convergence. This
integral when |z| is large will be at most of order |&'~°|. The same s true of the
more general tntegral (1) when B 1s not an integer. We thus get a superior limit to
the asymptotic value of (2 ; 6) when 3R («) < 0 and S is or is not integral.

Further progress must be made by a detailed examination of the singularities of
x () within its circle of convergence.
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A
The Functvon f(x) § e
e Functy x) =73 - .
n=0 T (n+ 1)

§ 87. To illustrate the general theory which has just been developed, we will discuss

the function
1
® wnem
S@) =2 vty

wn which 6 is not zero or a negative integer.

With our previous notation we have 8 =0, b, = 1/m!, and ! may be taken as
small as we please.

Hence, when R () > 0, we have

f@) = {5 RO

where |J, ()| tends to zero as |x| tends to infinity, and where

. & mcs—mr (I—B—")n) — H (_)s_mmcs—ml-‘ (S)
Ss_;£€7;io m!T(1—B—s) ,7.2:0 m!T (m)

Now the coefficients ,,c, are given by the expansion, valid when |y| <1,
{log (1=p)/(~9)}™ (1=y)" = % 0 (=9}
Hence S, is the coefficient of (—y)*™* in the expa,néion of

r([ § CIolog =iy

n=0 m! (’)’rl:'—l)1

in ascending powers of ¥ when |y| <1.

The reader will notice the connection between the series in the square brackets
and J,{log (1—y)}, where J, () is BrsstL’s function of zero order.

When $&(x)>0, we have now obtained the asymptotic expansion

e S
f(x)— 350 i{'

§ 38. Consider next the case when B () < 0.
Then, if |arg (—x)| <=[2, we see that f(x) is equal to

L[ (=) (=5) s,

2t

provided we neglect terms whose modulus when multiplied by |x|!, where / has any
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finite value, can be made as small as we please by taking |x| sufficiently large. The
integral is taken in the positive direction round a small circle enclosing s = —6.
The integral is equal to
(- )—92 [log (—-w)] K

n=0

where K, is the coefficient of e~ ®*? in the expansion of I' (f—¢) exp {1/e}.

We therefore have
_: _(rre
Kn _-m2=0 m ! (m+n+ 1) ! '

Hence, when R (z) <0,

- 0 [bgF%ﬂ (=)' (0)
f( ) ( m) 2 ! m-—OWb1 (m+n+1) J(fl'),
where |J (z)«!| for any finite value of / tends to zero as |z | tends to infinity.

The double series obviously represents an integral function of log (—), and may
be written

( )m I“(m) (0) yn ) B B
mzo n_on'(m+1+ Ik where y = log (—).

Using the notation ,Fy{p; =} for the series

y'T(p)
n=0 ! T (p+7l) ’
the double series may be written

5 (=) ()

ot (1)1 o 25 gk (Compare Part X.)

b (y) =

§ 39. We proceed now to obtam an asymplotic eacpomawn Jor this entegral function
of y.

For this purpose we shall anticipate the asymptotic expansions of the hyper-
geometric series (I, {p; y}, which will be subsequently developed.

We shall show that asymptotically (§ 51, IIL.)

I'(p—3)

wherein 38 (y)> 0 and +/y denotes the positive value of the square root when y is
real and positive. '
The series

— € —— — p— 1 .
OFl{p; y} = 62“/‘1/ M-{4 /\/y}l/2 szo{p‘—‘%‘, %_p; m},

2F0{Pw>2:w}=1+f31_1f2%x+f’1<m i(p>(p2+1)2

The modulus of the error which results from stopping at any term of the given
series is less than that of the last term retained when |y| is very large.
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We shall also show that however large 3 (p) may be, if m be any finite quantity
=p, we may put

; 1
offy {P ; y} =" y(fn“%/)z >
where, by taking |y| sufficiently large, we may make |I,(y)| as small as we please ;
and where |L,(y)| tends to a finite limit as p tends to infinity, |y | remaining constant.
We now put

s =2+ = [0 ;).

=0 m=R+1 m' ('”L—l—l)

The first series in which the summation is taken from 0 to R is equal to

o [g (=) 1™ (6) I‘(2m+3)[ \/ s Rowg {m+3/2 —1/2—m; ‘/_}+£ljﬂ4],

m=0 m! (m+1)! T(m+3[2) K/2+5/

where {F, {y} denotes that the sum of the first £ terms of the series in ascending
powers of y is to be taken. The modulus of J; (y) can be made as small as we please
by taking |y| sufficiently large.

The second series

$ VY0 B iz ;)

m= R+1 WL'(WL-I-I)' 0

pi (2P0 L)

m=R+1 m! (m+ 1)! y(R+2)/2 ?

is equal to

where |, (y)| for all values of m can be made as small as we please by sufficiently
inCreasing ly].

m (m)
Since 2 (m_f)(—I‘Tl(_)_Y) is absolutely convergent, we see that the second series may
m=0
be written 2 J.(y)
y(R+2)/2 ’

when |J; (y)| tends to zero as |y| tends to infinity.
Finally, therefore, if 8 () < 0 and |arg (—x)| < w/2, f(x) admits the asymptotic
equality
m y(m)
(—x)~*exp{2+/Tog(—2)} {4/ Tog(—z)}~ 3/2[ ( )T (0) (2m+2)! [4\/logi—wi o

o m!(m+1)! T'(m+3/2)

R-m+1 Ll J (%) ]
B {mesesbom e )+ )

where |J (x)| can be made as small as we please by taking |x| sufficiently large.

§ 40. We have therefore obtained the nature of the asymptotic expansion of f(x)
for the two cases when 3 («) > 0 and when R () < 0.

The integral which was employed in § 85 showed us that in the latter case | f(x)]
when |z| is very large is of order less than the order of |(—)™?| |2*| when € > 0.

We readily see that this is in agreement with the preceding result,

VOL. CCVL.—A, 20
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The investigation just concluded has emphasised the fact that the asymptotic
expansion of the more general function considered at the beginning of this Part of
the memoir demands, when 1 (x) < 0, a knowledge of the nature of the finite
singularities of y ().

Parr VI
Vel & @ (n+0)
e Function fi (x;0) = 2 (407 when x| < 1.

§ 41. The function f;(x;0) is defined when || <1 by the series 3 %(f;),? ) ;
n=0

where outside a circle of radius I <, where p is the least of the quanhtles |n+0],

n=0,1,2, .. 00, x(x) admits the absolutely convergent expansion 2 b,[x".

r=

The followmg propositions may be established :—
L When || <1, f;(x;0) can be written in the form

%0 brglg.*.,. (9(} N 9).

II. The function f;(x;#) has a single singularity in the finite part of the plane.
This singularity occurs at « = 1, and is a multiform point.

IIL. Near x = 1, f;(x; ¢) behaves like

21 (1ng)
(g = SEET

sin 77/8

if B be not a positive or negative integer (zero included). In fact, the difference
between f;(x;0) and this expression can, when R ()>1/2, be expanded in the
absolutely convergent series '

s 0.2 Ol B 0)
This theorem I first prove for the case when R (0)>1U'> 1, by means of contour
integrals similar to those employed throughout this memoir, and then extend to all

values of @ such that u>> [, by means of the difference formulee for multiple Riemann

{ functions,
IV. Whether B8 be integral or not, in fact, for all values of B of finite modulus,
provided the points # +n, n =0, 1,2,... o all lie outside the circle of convergence

of x (),

by 3 (=01 [ e dy
Jo(;0) = 2 ggX(ﬁ n)? 27n-"0' sinw(0+y)('y)ﬁ ’
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where (' is a contour which embraces the positive half of the real axis and includes
within its bulb the circle of convergence of x ().

V. When || is very large, the final integral in the equality just written is equal
to (—x)'~°J (x), where, if ' >1, |J (x) as |x| tends to infinity. We
thus obtain a superior limit to the asymptotic value of f;(x;¢) when |2 is large.
The problem of actually obtaining an asymptotic expansion depends upon a knowledge

of the singularities of x (¢) within its circle of convergence.

Part VIL

T (1 +nc9)

& 2T (1+on) ( 4
o D'(14+n+

The Functions 3,

n=0 I‘(l +n) ( >0)

(0=a<l) and 2
§ 42. The asymptotic expansions of these two functions are connected with one
another. The functions do not belong to the categories previously considered ; their
assoctated functions have not finite radius of convergence.
We give the results which may be obtained for these two functions, referring the

reader elsewhere for the detailed analysis.*
L If

f(x) =n§;‘,0w—?—((nli——;‘;b), we have, if a<1, f(x) = L exp { —y+xy*} dy,

the integration being taken along the positive half of the real axis.
Hence, if R (x) <0, we have the asymptotic expansion

Flx) = 2 (=)T((n+1)/a)

- x)w T (n+ 1) (=)™

the principal value of (—x)"*, which is real when « is real and negative, and which has
a cross-cut along the positive half of the real axis, being taken.
II. When R () > 0 and |arg «| < (1 —e) 47, we have

1

@) = ()= oxp ()™ (1 —out)} i,

By the substitution y = —1——1 - g +t we deduce the asymptotic expansion

>

J(2) = expl{(l~a) 0‘1 mwl a} (o)* - "‘)<1 2u>1/2 i

)+

(aw)(l -

the ¢,’s being definite constants.

* See a paper which will shortly appear in ¢ Cambridge Philosophical Transactions,” vol. 20.
202
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III. When 7—27 = |argxz|>%(1—a)m, we may obtain the same expansion as in

Case L.
IV. The expansions of Cases I. and ITI. may also be obtained by considering the
contour integral

_ L[p (—s) (—a)T (as+1) ds.

2

V. When « = 1/2, we obtain the asymptotic expansion

_ 173 1 _2_ et (__)71,11(2)7/4_2) )
J (@) = Peal’ (3) +ac2 néo I'(n+1)a™ ’

valid for all values of arg «, if P = 0 when |arg x| > n/4.

VI 1f () denoto the function 3 -2+ (L+70)

w=1 I'(1+n+nf)’ 6> 0, we have

¢ () = [:w?f exp {zy’ (1-y); dy.
Hence, if R (x)>0,

¢ (x) = exp {x09/(0+ 1)1} \/"2'{0(“1)/2931/2/(0_{_1)(0+2)/2} N {I‘(%) +£'1 dn} ,

n
x

the d,’s being definite constants.
VII. We can deduce this result from the result of I. by means of the contour
I'(—s)x’wds
I'(—as)sin7(1—a)s
VIII. By considering the contour integral
that, when |arg x| <2,

integral — 1 [

2

_1_[903I‘(1+03) T __ds, we can show
27 ' (1 +s+0s) sin 7s

N 1 Gar(n4nd) 1%y D (L+n+ (n+1)/6)
$l=o) = —1= 2 gy 0.5 .

Thus, when R («) <0, ¢ (x) needs two asymptotic series for its expression.

IX. The previous result can also be obtained by combining the results of IIL
and VIL

X. Similar analysis can be applied to series of the type

% T(1—n+qbn) ,
2 T+

where 6>>0, and ¢ is an integer.
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Parr VIIL
. a "
7 =3 —F— 0.
The Function E, (x) n§=‘.0 F(itan)’ o>

§ 43. After the previous investigations it is natural to consider the function
S — % This function has been denoted by E,(z) by MirrAc-LEFFLER,* who
n=o I' (1 +an)
has discussed its asymptotic behaviour. A reference to his papers will show how
differently the methods of this memoir lead us to attack the problem which he has
solved.

We will first consider the results which Mrrrac-LEFFLER has obtained for the
case 0 <a < 2. He shows that

1. |E, (z)| approaches zero when 27 —Lam > ¢>Lamr, where arg « = ¢.

2. When ¢ = + }am, | E, (x) |approaches olt.

3. | B, (x) — i—exp [7'7: cos 15] diminishes indefinitely when famr > ¢ > — Lo
o

It is evident that, where « = 0, E, (x) = 1/(1—), and that, when a <0, E, () is
an asymptotic series. We assume then o> 0.

It is evident that we may write

1 o’
E (—2) = — - d
«(=2) 2m[I‘(as+1)smsw :
where the integral is taken along a contour which encloses the points s =0, 1, 2... o,
but no other poles of the subject of integration and which embraces the positive half
of the real axis.

Now when s = u+w and |v| is large, I'(s) behaves like exp{—%|v|}. Therefore
the integral vanishes when taken along any part of an infinite contour for which
R (s)> —Fk, where k is a finite positive quantity, if |arg x| <4w(2—a). In order
that this equality may have a meaning, we assume 0 <a < 2.

Hence, under these restrictions,

E.(-2)= 3 &) g
" it T (1—an) = °
where |J,| is of order less than ] when || is large.

SOCIETY

Changing « into —x, we see that, if 0 <« < 2, we have the asymptotic equality

s 1 (A),

E,(x)=— =

ne1 2T (L— o)

OF

when 27 —}am > arg > Lam.

* MITTAG-LEFFLER, ¢Comptes Rendus,’ tome 137, pp. 554-558, 1903.
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§ 44. We consider next the asymptotic expansion of E,(x) for other values of
arg .
For this purpose we investigate the contour integral

1 .(F( )sin w.(l—a)sxsds,
2m sin 78
which is taken along a contour which embraces the positive half of the real axis and
encloses the poles of I'(—as) and the points s = 0, 1, 2, ... o, but no other poles of
the subject of integration. v

It is equal to

l—a
oo ( )1 ‘Smw<7>m+ g(—)"r‘(-——an) sin{m (1—a)nja"_
m=0 oam ! ! Sin T ,{)..,b =0 ‘ 7
o

- i exp [wi]+Ea ().

Now when s =u+w and |v| is very large, the subject of integration tends
exponentially to zero if
—tan+mw|l—a|—7+ |arg x| <O.

If @ <1, this condition gives |arg x| < $ma; and if o> 1, we must have
|arg x| < 27— o :

If these conditions are satisfied, the integral vanishes round that part of the circle
at infinity for which » > —k, where £ is a finite positive quantity.

We may deform the contour in the usual way, and we see that the integral is
equal to

+ Js

% (=)' T (an)sinw (l—a)n

n=1 "

where J, denotes the integral along a line parallel to the imaginary axis cutting
the real axis between s =—% and s = —(k+1). Thus, when |z| is large, |J,| is of
order less than 1/|x|"

Under the assigned conditions, we therefore have the asymptotic equahty

E(,L('v)—-l exp[xa]_.__. 1m e e (B,
in which we have at most neglected terms of order lower than any algebraical power
1/|@|, when || is large.

The conditions show that, when 2>a=1, the expansion is valid over the whole
plane at infinity. “When 1>a>0 we see that the expansion is valid over all the
area at infinity not covered by the condition 27—Lamr > arg « > toaar of the previpus
paragraph as well as over part of that area. |

In the investigation of the present paragraph we may have 4>a>2. If a = 2+#,
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where £ <2, the asymptotic expansion (B) has only been proved to be valid over the
area given by |arg | <m—4km. |

§ 45. It is at once evident from the expansion (B) that, if 2>a>0, we have, when
|arg x| = Lo,

1 N 1
Bo(@) = Jexp{sum}— 2 ooy * I

when || =
Therefore |E, (z)| behaves like a%'

In thus finding the complete asymptotic expansions for E,(x), when 0 <a<2, we
have incidentally verified all MiTTAG-LEFFLER’S results.

§ 46. We proceed next to consider the asymptotic value of B, (x) when a= 2.

In this case MITTAG-LEFFLER shows that :—

1 If —r<arg <,

. 2pmtarg x

B (a) =2 Zexp {[o]’e "« )

diminishes indefinitely as || increases, the summation embracing all real numbers p,
such that :
2pm +arg =1n.

o
2. If argx = +m,

Eu(x)_ﬂglgexp |m|1/a0082iﬂ7r coS ]wll/asin 2])—{-1“
p=0 0 o B

(wherein @ = 2m+9%, 0=9=—1 and m = 1, 2, 3, ...) diminishes indefinitely as ||
increases.

§ 47. To obtain the complete asymptotic expansions which correspond to these
results, we consider the contour integral

__:.l_ II‘ (....as) w wsds’
2 sin s

wherein ¢ is an odd positive integer equal to 2p+1 (say), and the contour of the
integral embraces the positive half of the real axis, and encloses the poles of T'(—as)
and the points s = 0, 1, 2, ... o, but no other poles of the subject of integration.

By Cavucny’s Theorem of Residues the integral is equal to

; (=)""ta™" sin 7 (gmfoa—m) + ; (=)" f(—-am) sin 7 (¢—a) ma™
m=0  om! sin wmfa m=0 T

@

_ § x™* sin wqm/fa "
m=o am! sin wm/ac m=0 L' (1 +oc’m)
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Now, if ¢ = 2p+1, we have
Sin Trqm!a — ™ (g—1) m/o. ]. ""6_2qu/a
sin wmfe T —eAmnle

P
_ 2 e2mp.m/a.
p=—p
Hence the integral is equal to

E, (x)—(1/) s exp {ae e},
p=—p

Now, if s = w+w, the integral will tend exponentially to zero when |v| is large if
—Yom+ [2p+1l—a|m—m+ Jargx|<0. . . . . . . (1)

We suppose in the integral that x* = exp {slog «}, and we take that value of arg «
which is such that |arg x| = .
If now a>2p+1, we obtain from the condition (1)

tor—2(p+1)w+ |arg x| <0,

and this will hold for all values of |arg | which are ==, provided o <2p+1.
On the other hand, if «<<2p+1, we must have '

2pm—3mwa+ |arg x| <0,

and this will hold for all values of |arg x| which are = if 2p+1 <4Za.

The contour integral will therefore vanish, when taken around that part of the
circle at infinity bounded by s =—#k, when k is a finite positive quantity, for all
values of |arg | which are == if we take p such that either

Fa<2p+1<a,
or
a<l2p+1<L Sa.
In either case therefore the integral will be equal to
_§ D) (=)ysing(a=g)m 1
m=1 we

where, when |x| is large, |J;| is of lower order than 1/|z|"
We therefore have
k
1

— A 1 Yo 2mpla),
Ea(m) nE—p“eXp {06 e } mif‘(l—-—am)x’”

+Jr . . . (C).

This asymptotic equality is valid for all values of arg « between + (the limits
included) if' p be so chosen that either
%‘ <2p+1<a,

or
a<l2p+1< 3a.
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Apparently, then, the expansion is not unique. But this indeterminateness is
illusory, for it only corresponds to terms of the sum

2 eXP {xl/a. 27rw./a.}
p=~—p
for which {2mp+ arg 2}/a does not lie between +3w
If we neglect these terms, which may be absorbed in J,, we may say that E, (x)
admits the asymptotic expansion

1
- /e ,2mp/o
2 eXP {m ¢ } mz-.l F(].—O('?n) x’”’

wherein p takes all integral values (positive, negative, or zero) such that
2mp+ arg x = o,

arg = having any value between *, these limits included.
This is equivalent to MiTTAG-LEFFLER’S results.

® 7

X

The Function E, (z; 0, B) = n—oI‘(l-i-fm) (O+n)y"

§ 48. Tt is evident that the results just obtained admit of many extensions. As
typical of these we may consider the function

w”«
B (w6, 8) = "= oI‘(1+an)(0+n)‘3’

wherein «> 0 and 6 is not equal to zero or a negative integer.
‘We see at once that
E 9 .( 11'933

(=2 B) = 2 I'(as+1)sin 1rs(8+9)3

the integral being taken round a contour which embraces the positive half of the real
axis and includes the points s = 0, 1,2, ... oo, but no other poles of the subject of
integration.

We assume that 2° = exp {s log #}, and that the logarithm has its principal value
whose argument lies between +a. We also assume that (s+0)° = exp {8 log (s+0)},
and that if & be not real, the logarithm has its principal value with respect to a
cross-cut drawn from s = — @, parallel to the negative direction of the real axis. If ¢
were real, we should slightly deform this cross-cut. We omit the consideration
of this particular case in the following investigation.

We assume in the first place that 2 >« > 0. Then if |arg x| <= (1—3a), the
integral vanishes along that part of a great circle at infinity for which & (s) > — 4.

VOL, CCVL.—A, 2P
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We therefore have

BN S o O D ey o 0t
Ea( X, 0’ B) - nél].—‘(].-‘an) (ﬂ_n)ﬁ 21 [ F(l—a@—aay) Siﬂ 7T(9+y) ’

the latter integral embracing the positive half of the real axis and including the
origin, but no other singularity of the subject of integration. Since the zeros of
I'(1—af—ay) sin 7 (0+y) lie outside the contour, we may employ the summable
divergent series

of{(L (1=ab—ug) sinm (043)} = 3 (=) dy
n=0
under the sign of integration. The integral will then be represented asymptotically by

;o
ne0 11 (B__,n) (10g m)n—-ﬁ-{—l .

—0 @

~Z_ 3 j(——y)"”” d,e"8 5 dy = — 27

2%t n=0

If then |arg x| < w(1—a/2), we have the asymptotic expansion

. _ * 1 -6 -1 e dy
E,(—;0,B) = El T (1 —on) (0—n) (—2) + 27’ (log )P ,Eo T (8—n) (log )"

Therefore when 0 <a <2, and 2r—}ar > arg x > o, we have

E, (2;0,B) = - zmr ( 1_aln) Gy (—@) " log (—w)}ﬂ—léor ( B_n)ﬁ’;g a7 A

In this formula the principal value of log (—x), whose imaginary part lies between
+m, is to be taken, and (6—n)® is defined with reference to the cross-cut previously
taken. g

§ 49. To obtain the asymptotic expansion of E, (x; 6, B) for other values of |arg x|
when 0 <a <2, and for all values of arg ® when a«>2, we consider the contour
integral _

1 sin (w(g—o)s;a’
7w | Do) ST T

round a contour which embraces the positive half of the real axis and includes the
poles of T'(—as) and the points s =0, 1, 2, ... o, but no other singularities of the
subject of integration.

In the subject of integration ¢ is an odd positive integer equal to 2p+1 (say), and
x* and (0+s)® are defined as in the previous section. The integral is evidently
equal to

® N

1 g ame sin 7wqm/fo LS x i
a m=0 m! sin wmfo (0+mfo)f * o T (1+am) (0+m)k

The first series is equal to

1 2 ® m/a ,2mona oz
—z 3 3 _f._f___.__p = —gf1 S Gﬁ {wl/u62rrq.c/a,;a9}’
O p=—p m=0 'm!((9+'m/a) p=—p
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where
Gg(x; 0 ——~x—m-
( ) m= 0 m' (m -+ 0)

Now we have obtained the asymptotic expansion (§ 22)

G, (@:6) = ”057_%1_(?1{1__@_)_5 (=)™ [log (—=) ]~ 1: n?r(/(B )n)r[(lzafg()— )T

where the ¢’s are defined by the expansion, valid when y < 1,

[105‘ E}?/—y)]ﬁ~l(1 yy =

If |arg «|=m, we see, as before, that it is sufficient to take p such that
o <2p+1<a, or a <2p+1<3a, in order that the integral may vanish for an
infinite contour for which R (s) > —*%.

When 1<a<2, we may take p = 0. And when 0 <a=1, we may take p =0,
provided |arg x| < 3o

Under these conditions the integral is asymptotically equal to

(=)

IIMS’

s 1 LI —s T (280+ay) sin {7 (a— 0
—ﬁlI‘(l—am) =y 21”[ (~v) (2f+ "/)Smﬂ{(e(-{_y)Q) (y+6)} dy.

The contour of the integral embraces the positive half of the real axis and contains
no singularities of the subject of integration except the origin. The terms neglected
in the equality are of order less than any algebraical power of 1/|x|, when |z| is
large.

To obtain an asymptotic expansion for the integral, we may, under the integral
sign, employ the summable divergent expansion

I'(af+oy) sin {7 (a— +l9}' _ - 7
B

-6
The integral is then represented by @ SoI‘ A=) [log Pt
All these asymptotic expansions are negligible compared with the dominant terms
of Gy {a"e™ ' ; ab}.

- Hence when 0<a <2, and |arg z| < an/2, we have asymptotically

0. 8) = o XRAT} 3 el (1-P)
B(w;0,8) = o™ =05 2 v =g =n)’

where 4¢, is given by the expansion

@®

[log (1—g) 7 (1=9)*™" = (=9)"* 2 wea(=9)",

valid when |y| < 1.
2P 2
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And when a =2, we have asymptotically for all values of |arg x|

E.(v;0,8] = o* % [BXP fore s}y ean(l-B}g _‘n)] 7

p=-p ‘,L.B/ae%rmﬁ/a n=0 96"/“62”‘“"/“I‘ (1 —
wherein u takes all integral values, positive, negative, or zero, such that

2ap+arg & = tow

Parr IX.
The Function \F, {a;p;x}.

§ 50. Generalised hypergeometric functions form a wide class of integral functions
whose asymptotic expansions are closely connected with the theory of linear
differential equations.

The general type of such series is

Lp @ o (o +1).. 0, (2, +1)

Lopropg 1.2.pi(pit1) e pg(pgt1)

~Dp)--Tlp) ¢ Tlutn)..T(gtn) .
T ()T () oo T (0t D) ) e (o)

'|2+

wherein p=gq.
This series we shall denote by ,F,{a, ..., &,; p1, ..., py; 2} or briefly by ,F, {z}.
The series satisfies the differential equation :

{(9+a1)...(9+ap)-—%(8+p1m—1)...(-9+p4—1)}y=O )Y

where 3 = x a-dm The equation is of order (¢+1), and the other ¢ solutions are

given by
al” - g{al prtl, e, 0—pit+152—py, po—p1+1, ..., pp—prt+1 ;w}s

and (¢—1) similar functions.

I give here some of the results which I have obtained by applying integrals of the
types previously used to the theory of these series. For detailed investigations I
refer to a forthcoming paper.*

I. The series ,\F, {a;p;a} satisfies the equation

2P —(a=p) oy = 0.

* ¢ Cambridge Philosophical Transactions,” vol. 20.
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An independent solution of this equation is

xl-plFl (a_‘p‘l" 1 ; 2—p ; 93).

II. By considering the contour integral — 5—1—« EI‘ (n—s)a* ds, we may show that
mL

1F1{“§,0§90} = e, {P"'a P -—.’)3}.

This result is valid for all values of arg «. It has been otherwise obtained by Orr.
ITI. By considering the contour integral

1 (T(=$)T (a+s) (=) ;.
—2_7_7'7“( I‘(p+s)( ds,

we may show that, when R (z) <0, ,F,{a; p;x} admits the asymptotic expansion

_ 1
[{T (p)/L (p=a)}} (=) o] @, 1=pta; =1 .
IV. Combining II. and IIL, we show that, when R () >0, .Fi{a;p;z} admits

the asymptotic expansion
¢T (p) { w1 .1} |
T (o) JFosp—a, 1—a; e

V. The combination of IIL and IV. gives us the complete asymptotic expansion of
O {0‘ P 90}

This I have verified by means of integrals taken round double loop contours of
PocarAMMER’S type.

VI. It is possible to take such a linear combination of the two solutions

Fi{o;psa} and (Fi{a—p+1;2—p;a}at™
as will admit all round « = o the single asymptotic expansion
(—x) 5 Fo{e, 1—p+a;—1[x},
By considering the contour integral

1 s
‘2—7”11‘(-—3) I'(1—p—$)T (a-+s)x*ds

we can, in fact, prove that, when |arg x| < 37/2,
L(a)T(1=p)iFi{a;p;a} + T (a+1=p) T (p—1) @' " F {a—p+1;2—p;a}
=2~ T ()T (1+a—p).Fo{a, 1+a—p; ~1fx}.

This theorem is equivalent to two different results when R () < 0. By this means
we can obtain IIL anew.
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VIL Similarly, when |arg x| < 87/2, we have

L' (1=p) Coe T'(p—1) 1-, ~ o
F(l_a)ﬂ?l{a,f), m}+—————F(p_a)w B {l—p+a;2—p;—ax}

o am 1
— ZQC“"F{ — ,1_.. ;_,}_
(9 2Ly P o 2 P

VIII. If we put « =1, we obtain the function F,(z) =3 M For this
n=o I' (p-+n)

function we obtain, when |arg «| <, the asymptotic equality

.
7

F, () = a7 (p) - £ {e=1)eclo=n),
n=1 o
This result can be otherwise obtained from the equality

F,(x) = 14+x¢ j:e"’”-’/yp"‘dy.

Parr X.
The Function Fy{p; a}.

. Lo . @
§ 51. I. The function F,{p; z} = T'(p) EO T T )T (717

any value which is not zero or a negative integer, satisfies the differential equation

, wherein p may have

oS W,
A second independent solution is @'*,F,{2—p;«}. Evidently the function is

substantially Besser's function.

We have

1 n 7
J.(2) = I-‘-—(;L—_rl—)(%z) oy {n+1; —12°}.

II. By considering the contour integral — 2—1—- j I' (2n—s) (4x) %s ds, we prove that
mL

Fi{p;a} = e Fi{p—%; 2p—1; 42"}
= " Fi {p—%; 2p—1; —4a'}.)

This result is valid for all values of arg @, and for the case of real variables was
first established by KuMmeR.

By means of this theorem we deduce the theory of the function (F,{p; «} from the
theory of the function ,F;{a; p; x} developed in Part IX.
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ITI. For all values of arg « we have the asymptotic expansion

K tzlz].—‘ 2 _']. — ]
oFi{p; w) = __(._R__%T) (da2)H szo{p—%, —p; m}

T'(p
o I 2p—1 /212~ ’ L
= A C L P S

We take that value of (4x"?)"*=* which is equal to exp{(3—p) log (42"*)}, the
logarithm being real when « is real and positive and having a cross-cut along the
negative half of the real axis. Similarly (—4x"%)"*"* is equal to exp {(§—p) log (—42"*)}
when the logarithm is real, when « is real and negative and has a cross-cut along the
positive half of the real axis.

IV. We may deduce the asymptotlc behaviour of BESSEL'S functlon

The theorem, though its expression is more concise, is equivalent to the results
obtained by STOKES.

V. By considering the integral — 5%7_ j I'(—s)T(1—p—s)x'ds we may prove that,
L
if |arg x| <,
T(1=p)oFi{p; x}+a* T (p—1)F:1 {2—p; x}

= mfPA R (8 p—; —fen),

Parr XL
The Generalised Hypergeometric Functions.

§ 52. When p = ¢, the generalised hypergeometric functions are integral functions.
We limit ourselves to this case.
I. By considering the contour integral

1 [ D (=8) D (+s) T (1=pi=s) ... D (L—=p,—5) . ;o

T 2m T (1—a—8) ... T (1—a,—s)

we may show that the linear combination of functions,

F(C;‘l)(lr—(i;pl)r(f(i—)%) JF Loty 5 pryeess pys (=)0}

+ L (s=pr+1) T (p=1) T (pr=ps) ... T (p1=py) 15,
T (p—ag) T (pr—2s) ... T (p1—2z,)

Kom—pitl ., ap—pit 1 2—p, T=prtpoe.e, L=prbpy; (=) %%}
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+ (g—1) other terms similar to the last, admits the asymptotic expansion

(o) T (y—py+1) ... T (ey—p,+ l)mﬁa]
F(l—a2+0&1) ‘e F (1"‘““1)—""“1)

Y

xg+1Fp—1{a17 oy —py+ 1., 0‘1“‘Pg+]-5 og—ay+1,..., al““;;+1 y T };

&

provided |arg x| < §(q~p+3)m.

There are evidently p relations similar to the one just written, each corresponding
to an asymptotic solution of the differential equation (1) of p in the neighbourhood of
x = oo, There are therefore g+1—p other asymptotic solutions near & = oo which
will be asymptotic expansions of other linear combinations of the ¢+1 fundamental
hypergeometric functions.

[IL] The linear combination of hypergeometric functions

I T (1-p,)

L:‘L*“"‘““’“qu{“h“'» %5 Proeess P (=) 7P

11 I"(l—ocr)

r=1

g
o Tlp=1) 1T (p,—pi)
+T§1w pr = Holl=0=ppey Lho,—p,;
tI:[l r (Pr—at)

Z=pryees pg—prt 1 (=) T}

can be expressed by the contour integral

q
1 T« S)1EIF(1 Pr—S5)
I=—-— 2 ds,
2 ?
T (1—e,—s)

r=1

and provided |arg #| < (q+1—p) /2, this integral may be taken along a line in the
finite part of the plane parallel to the imaginary axis.
If ¢+1—p = p, we obtain

exp {pa} (2m) R ] = — —%_-b j S (s) * ds,
where
. q
( ) » F(—S+t/,u) I I‘(l—p,v+t/p«-’$)
S(s)=23 r=1 ,
t=0 ﬁ F<t+_/"> ﬁ I'(l—a,+ ¢ —3)
r=1 14 r=1 1
when

R (s)> 33{"”—'2‘—1 +a1+...+ap—p1——...—pg}/p.
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We can infer that asymptotically, when |x| is large,

T = exp { —puah}(2m) -0t =y o),

where |J ()| tends to unity as |«| tends to infinity.

The complete asymptotic expansion is thus made to depend upon the determination
of the singularities of S (s).

The relation obtained holds when |2"*| <, and is thus equivalent to g+1—p

A A

independent relations.

In this way the (¢+1) asymptotic expansions of the differential equation for the
generalised hypergeometric equation are connected with the solutions which are
integral functions in the finite part of the plane. The results agree with those of
Orr; the methods, however, which have been suggested enable us to dispense
entirely with his elaborate analysis.
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